
Journal of the Korean Physical Society, Vol. 45, No. 2, August 2004, pp. 310∼317
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We have investigated the time evolution of the vacancy-mediated disordering process in binary
alloys at finite temperatures. Qualitatively, we monitor the changes in the configurations by taking
sequences of snapshots for various temperatures and comparing their morphologies. Quantita-
tively, we carry out Monte Carlo simulations to determine the time-dependent disorder parameter
A(L, T ; t) and the time-dependent structure factors Sk(t) for moderately low temperatures. This
study differs from previous studies done at infinite temperature in that the vacancy here executes
highly active walks, which are subjected to nonlinear feedbacks, instead of the random walks that
take place in the limit of T → ∞. We find that the slope of the log-log plot of A(L, T ; t) vs. t
for finite temperatures follows the temperature dependence given by the Gompertz function and
reaches a limiting value of 1

2
only as the temperature approaches infinity. For the structure factors,

namely, Sk(t) vs. t, the overall features are similar to those found at infinite T . The two key
differences between our results and those at infinite T are the saturated value and the intermediate
region in which the portion of the graph whose slope is equal to one becomes smaller and is gradu-
ally replaced by a curve having a slope of 0.5. This last difference is especially evident at very low
temperatures.
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I. INTRODUCTION

Vacancy-mediated disordering processes play very im-
portant roles in material science and physics. In partic-
ular, they are important in interface corrosion or erosion
phenomena [1–3] and in device fabrication [4, 5]. We
are interested here in how disorder develops in a system
when its kinetics is controlled by an energetic “feedback”
from the environment. We have investigated the kinetic
disordering caused by a highly mobile vacancy arising
when there is a rapid increase in the temperature of an
initially phase-segregated binary alloy. We start with a
ferromagnetically ordered configuration with sharp in-
terfaces at zero-temperature and end up with a disor-
dered configuration at a final temperature [see Fig. 1].
We are interested in the evolution of how particles of
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one species are transported into regions that are domi-
nated by other species when there is interface roughening
or when a complete destruction of the interface has oc-
curred. If the final temperature is sufficiently high, the
interface will eventually disappear, resulting in a homo-
geneous final (mixed) state. If the temperatures are low,
the “degree of homogeneity” associated with the final
configuration will change.

We will be looking at a symmetric binary alloy of A
and B atoms containing a very small number of vacan-
cies, ≈ 10−5, the number occurring in most real systems
[6]. The vacancy acts as a “catalyst”, exchanging with
neighboring particles according to the usual energetic of
the (dilute) Ising model [7]. The particle themselves
form a passive background whose dynamics is slaved to
the vacancy motion. This system corresponds to a real
material in which the characteristic time scale for va-
cancy diffusion is much faster than the ordinary bulk
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diffusion time.
The complete or partial mixing of two materials at the

interface plays a key role in many physical processes. We
mention just one application having huge technological
potential for device fabrication. It concerns nanowire
etching by electron beam lithography [4]: When a thin
film of platinum is deposited on a silicon wafer, inter-
diffusion of Pt and Si will produce a mixed layer. If this
layer is heated locally, e.g., by exposure to an electron
beam, silicides, such as Pt2Si and PtSi, will be formed.
The unexposed platinum can then be etched away, leav-
ing behind conducting nanoscale structures. The per-
formance of these devices requires precisely engineered
layer thicknesses and interfaces. The performance can
be significantly changed by the disorder arising from the
inter-diffusion or the resulting interfacial fluctuations.

As was done in many studies on phase ordering, e.g.,
on phase separation and domain growth [8–16], we will
be looking for universal features in the time evolution
of the system. Several questions emerge quite naturally:
Are there characteristic time scales over which the dis-
ordering takes place, how do they depend on the system
size, temperature, and other controlling parameters, how
do local density profiles and correlation functions evolve
with time, and how do these features respond to changes
in the relative concentrations of vacancies and alloy com-
ponents? Answers to some of these questions are known,
but only in the limit of infinitely high temperatures
where the vacancies execute random walk-motion [17].
In this paper we will study the “up quenching” to non-
zero, moderate (T > Tc) and low(T < Tc)temperatures.
The extensions to these temperatures are nontrivial ones
since the hopping rates of the vacancy will depend on the
spin configuration in its vicinity. This will introduce a
highly non-linear feedback effect, which is absent for the
case of Brownian vacancies. If the final temperature re-
mains above the coexistence line of the Ising model, the
steady state will be disordered. The ordered phase will
remain if the temperature is below Tc. Mathematically,
there are no exact solutions to the non-equilibrium mas-
ter equation [18] for this problem except for very small
system [24]. Progress, therefore, relies mainly on com-
puter simulations.

This article is organized as follows: First, we clearly
define the model, the time-dependent disorder parame-
ters, and the structure factors. This is done in Section II.
In Section III, the Monte Carlo (MC) simulation results
and discussion are given. We summarize our results and
make some comments in the last section.

II. MODEL

We start with a two-dimensional square lattice of di-
mensions L × L. Each lattice site is denoted by a pair
of integers, r = (i, j). To model binary systems consist-
ing of two species of particles, we allow each site to be

occupied by either a black particle (“spin up”), a white
particle (“spin down”), or a vacancy (“spin zero”). Mul-
tiple occupancy is forbidden. One can view this model
as being the dilute Ising model. A configuration in the
model will be described by a set of spin variables {σr}
which can take three values: σr = +1(−1) for a black
(white) particle, and σr = 0 for a vacancy. The numbers
of black (N+) and white (N−) particles are conserved
and differ by at most 1: N+ ≈ N− ∼= 1

2 (L2). To model
the minute concentration of vacancies which is seen in
real systems, we focus on the case where the number of
vacancies is much less than the number of black and the
number of white particles, M � N+, N−. In fact, we
take M to be 1 in all of the simulations. Fully periodic
boundary conditions in all directions are assumed. The
initial configuration will be completely phase segregated
and unstable; i.e., black and white particles will each fill
one half of the system, with a sharp flat interface between
them (chosen to lie horizontally along the x axis). The
single vacancy will initially be located at the interface.

We now turn to the microscopic dynamics or local up-
date rule. Besides the correlation via the excluded vol-
ume constraint, the particles and the vacancy interact
with one another according to the rules of the dilute
Ising model:

H[{σr}] = −J
∑

<r,r′>

σrσr′ (1)

with ferromagnetic, nearest-neighbor coupling for J > 0.
Since the dilution is very small, the behavior of the
system will be that of the ordinary (non-dilute) two-
dimensional Ising model. Therefore, a phase transition
from a disordered phase to a phase-segregated phase
will occur at the Onsager critical temperature, Tc =
2.267...J/kB [19]. The ground state will be doubly de-
generate and consist of strips of positive and negative
spins, each filling half of the system, separated by two
planar interfaces. Since the particle-particle interactions
are ferromagnetic, the single vacancy is at the interface.
This is the initial configuration of the disordering pro-
cess.

The vacancy now performs an active walk or non-
linear feedback walk on the lattice with a transi-
tion rate per unit time step (Monte Carlo step) de-
fined as W [{σr}{σ′r}] from configuration {σr} into a
new configuration {σ′r}. Here, only particle-vacancy
nearest-neighbor exchanges are allowed. We choose
W [{σr}{σ′r}] to be the usual Metropolis rate [20]:
namely,

W = min{1, exp(−1/kBT )∆H)} (2)

where ∆H is the difference in the energy of the system
before and after the jump. One should expect that as
time progresses, the vacancy will disorder the interface
when T > 0. For T > Tc > 0, the vacancy will com-
pletely dissolve the interface.



-312- Journal of the Korean Physical Society, Vol. 45, No. 2, August 2004

In each Monte Carlo time step (MCS) in the simula-
tions, one of the four nearest neighbors of the vacancy
will be picked at random. The exchange with the picked
neighbor site is then performed according to the rate de-
fined above; no particle-particle exchanges are allowed.
There are two control parameters for the simulations,
namely the temperature T and the system size L. The
final temperature after the up-quench (measured in units
of the Onsager temperature Tc ) varies between 0.5Tc and
infinity. The system size is 100 × 100. Our data are av-
erages over 103 realizations (or runs) or more, depending
on the desired precision of the output.

At t = 0, a system which has the phase separation
of the T = 0 configuration experiences a temperature
up-quench to a finite temperature. We can now look at
the evolution of the system as it undergoes disordering.
We qualitatively monitor the temporal evolution visually
and quantitatively measure the following:

1. Time-dependent Disorder Parameter
A(L, T ; t)

The average number of black and white nearest-
neighbor pairs, A(L, T ; t), as a function of time is related
to the Ising energy by

A(L, T ; t) ∼= L2 +
1

2J
< H >, (3)

where < • > denotes the time-dependent configurational
average over a large number of independent runs.

2. Time-dependent Structure Factors Sk(t)

The timed-dependent structure facture factor Sk(t) is
the Fourier transform of the correlation function defined
as

Sk(t) ≡ 1
L2

< |
∑

σr(t) exp(−ik · r)|2 >, (4)

where k = (kx, ky) = 2π
L (nx, ny), with nx and ny being

integers. We shall focus on the more interesting structure
factors, i.e., those whose wave vector k is perpendicular
to the initial planar interface. We shall focus on ny = 0
and nx = 1, 2, 3, 4, 5, and 6.

III. RESULTS AND DISCUSSION

1. Visual Snapshots

Qualitatively, the visual impressions of the disordering
process are seen in Fig. 1. For comparison, the visual

Fig. 1. Sequence of snapshots showing the disorder-
ing process of 100 × 100 a system with T = ∞. The
black and the gray squares represent the two types of par-
ticles (σr = ±1), and the white square denotes the va-
cancy (σr = 0). The configurations were recorded after
0, 10, 102, 103, 104, 105, 106, 107, and 108 MCS.

impressions of the saturated configurations are seen in
Fig. 2. The former shows the evolution of a typical
configuration in a 100 × 100 system for T = ∞, and
the later shows the saturated configuration for four tem-
peratures (T = 3.5Tc, 1.5Tc, and 0.8Tc). In all cases,
the initial interfaces at t = 0 were completely smooth.
As time progressed, the interfaces began to break up
slowly as the vacancy move: a random walk motion for
T = ∞ and an active walk for finite temperatures. As
more particles (inter) diffused into the oppositely col-
ored domains, roughening of the interface began. As
time went on, the degree of homogeneity became larger
and the interface became rougher. Eventually, at steady
state, the system corresponding T > Tc to became disor-
dered or became a homogenous mixed state. For T < Tc,
phase segregation remains, but with a relatively rougher
interface. As the final temperature was lowered farther,
the system took a longer time to reach the final steady
state. The time taken went approximately as the order
of L4 (for not too low of a temperature). Even from the
snapshots, one can clearly see that in comparison with
the infinite-temperature case, the final configurations for
the non-zero temperatures show clear evidence of a finite
correlation length (defined as the length scale associated
with a two-point spatial correlation function), which will
get larger as T is set lower.

It should be noted that the “correlation” length mea-
sures the size of the fluctuation and diverges at criti-
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Fig. 2. Snapshots showing the typical saturated con-
figurations of a 100 × 100 system in 108MCS with T =
0.8Tc, 1.5Tc, 2.5Tc, and ∞.

cal temperatures. One also sees larger clusters. These
are due to the effects of the interactions between par-
ticles, which becomes more and more significant as T
is decreased. It should be noted that, in all cases, the
vacancy comes into equilibrium much sooner than the
particles. At lower temperatures, it takes the vacancy
longer to reach the steady state. From these visual pic-
tures, it is evident that at least two time scales have to
be taken into account: namely, the different time scales
for the vacancy and the particles to reach the equilib-
rium state, separately [21–23] (vacancy time scale ≈ L2

and particles time scale ≈ L4 form random walk theory).
The time scale for the vacancies can be determined by
measuring the vacancy profile. This, however, would be
extremely difficult for the case of highly correlated mo-
tions using the analytic method employed in this paper.
It could be done by applying the two-time-scale tech-
nique to the exact master equation. Work on this new
method is presently being done.

2. Time-dependent Disorder Parameter

The disordering process is clearly reflected in the dis-
order parameter A(L, T ; t). As seen in Fig. 3 and Fig. 4,
A(L, T ; t) increases from an order of 2L−1 for the initial
configuration to an order of L2 for the equilibrium con-
figuration. Similar to Refs. 21 and 22, one can clearly
distinguish (at not so low a T ), three regions in Fig. 3,
an early region (E), an intermediate region (I), and a
saturation region (S). It should be noted that the I and
S regions emerge only in a finite system. As the system
size increases, the (I) region spans a widening time range.
In Ref. 21, it was shown that in I, the system shows a

Fig. 3. Plot of the disorder parameter A(L, T ; t) vs. t
for L = 100 and T = ∞. It shows the emergence of an
early region (E), an intermediate region (I), and a late or
saturation region (S). The reference straight line has a slope
of 0.5. The approximate saturation time scale of the vacancy
and the particles are indicated on the bottom and the top,
respectively.

Fig. 4. Data for the disorder parameter A(L, T ; t) versus
time at 0.5Tc, 0.7Tc, 0.9Tc, 1.1Tc, 1.7Tc, 3.5Tc, and ∞ accord-
ing to the arrow direction. We show the changing slope and
the steady-state number of broken-bond lowering.

dynamic scaling as A(L, T ; t) ≈ t
1
2 for infinite T . The

universality of this scaling relation has been extensively
studied for the case of infinitely high T with an external
field [23]. The same scaling relation was found to remain
valid in the case of high T with an external field

One of the goals in this work was to test to what extend
dynamic scaling, namely, the relation A(L, T ; t) ≈ t

1
2 ,

holds at moderate and low temperatures. We carried
out extensive MC simulations and fitted the curves using
nonlinear regression. We found that the slope of the log-
log plot or the power dependence (in t) of the disorder
parameter at low temperature deviated significantly from
the value 0.5. The results are seen in the Table1.

In Fig. 4, log-log plots A(L, T ; t) vs. t for various finite
temperatures are shown. These should be compared with
the slope for the infinite-T case (whose slope = 0.5). In
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Table 1. Slope of the intermediate region for a lattice size
of which has a standard error of slope, a correlation coefficient
(R), a standard deviation (SD), and a probability value. For
each datum, we choose a range of time with 35 numbers from
105 to 6 × 106.

Temperature Slope Standard Correlation Standard

(T) error of coefficient deviation

slope (R) (SD)

0.5 0.06460 0.00132 0.99322 0.00930

0.7 0.14225 8.44926E-4 0.99942 0.00601

0.9 0.25175 0.00153 0.99939 0.01090

1.0 0.30063 0.00198 0.99928 0.01411

1.1 0.34136 0.00226 0.99928 0.01608

1.3 0.39467 0.00228 0.99945 0.01623

1.5 0.42629 0.00182 0.99970 0.01297

1.7 0.44476 0.00160 0.99979 0.01136

1.9 0.45742 0.00122 0.99988 0.00866

2.1 0.46503 0.00105 0.99992 0.00748

2.3 0.47038 0.00083 0.99995 0.00594

2.5 0.47485 0.00074 0.99996 0.00524

2.7 0.47621 0.00072 0.99996 0.00514

2.9 0.47985 0.00030 0.99999 0.00211

3.1 0.48214 0.00048 0.99998 0.00340

3.3 0.48317 0.00042 0.99999 0.00296

3.5 0.48574 0.00029 0.99999 0.00208

infinity 0.49921 0.00012 1.00000 0.00088

Table 1, the data analysis of the slope was done using the
program Microcal(MT) Origin, version 6.0 [25]. For the
intermediate region, we determined the slope by using a
linear regression analysis of 35 collected points generated
by 105 to 6× 106, more or less, Monte Carlo Steps (MCS)
(˜1.5 decades). From the table, we can see that at T =
0.5Tc, the slope is 0.0646 with a correlation coefficient =
0.99533 and a standard deviation (SD) = 0.0093. This
deviates from 0.5 by about 87.08 %. At T = 3.5Tc, the
slope is 0.48574 with a correlation coefficient = 0.99999
and a SD = 0.00208. This slope deviates from 0.5 by
about 2.85 %. If the temperature is increased further to
T � Tc (infinite temperature), the slope increases to 0.5.
As a function of T, the value of the slope increases rapidly
at first and then slowly to its limiting value. We confirm
this by fitting the data to several fitting functions. First,
we used the first order exponential decay function

y = y0 +A1e
− x
t1 , (5)

where y0, A1, and t1 are fitting parameters. t1 is relate to
a temperature threshold. Next, the Gompertz function
[26]

y = ae−(exp(−k(x−xc))), (6)

was used. Here a, k, and xc are fitting parameters. The
Gompertz function has been used to analyze the dynamic

Fig. 5. Fitting of the first-order exponential function
(dashed line) given in Eq. (5) with y0 = 0.49086 ± 0.00587,
A1 = −1.07167 ± 0.06719, and t1 = 0.57345 ± 0.0334 with
the regression R2 = 0.99072 and Chi2 = 0.00018, and the
fitting of the Gompertz function (solid line) given in Eq. (6)
with a = 0.47867 ± 0.00188, k = 2.98570 ± 0.07369, and
xc = 0.74522±0.00604 with the regression R2 = 0.99852 and
Chi2 = 0.00003.

growth of biological system, i.e., tumor growth. To sim-
plify Eq. (6), one can do a Taylor expansion of the Gom-
pertz function. The first two terms will be the first-order
exponential decay terms, y = a(1 − exp(−k(x − xc)) +
exp(−2k(x−xc))

2! + ...). The fit of the data to Eq. (5) gives
y0 = 0.49086 ± 0.00587, A1 = −1.07167 ± 0.06719, and
t1 = 0.7345± 0.0334 with a regression R2 = 0.99072 and
Chi2 = 0.00018. A fit of the data to the Gompertz func-
tions gives a = 0.47867±0.00188, k = 2.98570±0.07369,
and xc = 0.74522 ± 0.00604 with a regression R2 =
0.99852 and Chi2 = 0.00003, as shown in Fig. 5. From
the values of R2 and Chi2, the Gompertz function ap-
pears to give a better fit to our data.

At not too low a T , this conclusion might be tenu-
ous since one could argue that a correction to the dy-
namic scaling caused the deviation. After extensive sim-
ulations, we are convinced that the behavior at these not-
too-low values of T ’s cannot belong to the same univer-
sality class because of the great deviation from the slope
0.5. One explanation could be the following: In the case
of the random walk or biased walk, the walker has no in-
teraction with the environment. Therefore, there would
be no feedback. The walker wanders through the system,
regardless of the change in the environmental landscape.
In contrast for the finite-T case, there is a non-linear
feedback which causes the walker to become a more ac-
tive walker. Changes in the landscape, the energy, or the
barrier will cause a nonlinear feedback which will change
how the walker takes its next step. The effect will be
highly non-linear even though it is still controlled by a
driving force which is forcing the system into the “ap-
propriate” steady state. As the temperature decreases,
the particle’s motion becomes more and more correlated.
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This results in the extinction of the random nature walk
since it is driven by uncorrelated thermal fluctuations.
We have a plot of the relation between the slope and
the temperature in Fig. 5 (exponential function fit and
Gompertz function fit)

With the significant change in the slope, it is reason-
able to say that the scaling law for a highly active walk
corresponding to moderate and low temperatures should
be different from that for high temperatures or for a bi-
ased walk. It is obvious that their universality classes
are not the same. For low temperatures, the microscopic
dynamics is local. Due to the interaction between the
particles, correlation effects dominate. As seen from the
snapshots, the correlation length, ζ(T ), depends on the
temperature. As is well known, ζ(T ) tends to O(L) as T
approaches Tc. There is no characteristic length scale as
in critical phenomena. The concept of a short distance
over which there is no memory of the previous random
walk breaks down. In our simulations, one notices that
ζ(T ) is in units of the lattice spacing.

3. Time-dependent Structure Factors (SF)

In this paper we give some preliminary, but significant,
results for Sk(t). More simulations and analytic works
were in progress. We focused here on the Sk(t)’s whose
wave vectors were perpendicular to the initial interfacial
boundary, ny = 0 and nx = 1, 2, 3, 4, 5, and 6 to con-
serve computer run time. The remaining values of nx
are expected to give features similar to those for the first
six nx’s without any dramatic change. We shall refer to
them as the odd and the even wave-vector indices. From
the definition of the SF’s, Sk(t = 0) is on the order of L2

when is nx odd and is on the order of (L2)−1 when is nx
even. There would have been some changes in notation
if we had used on odd lattice size. Since we have only
considered T > Tc, the equilibrium configuration will be
homogeneous. Sk(t → ∞, T � 1) = 1 for both odd and
even wave vectors.

Some interesting results have been obtained in the
infinite-temperature limit [27]. Like our results for finite
temperatures, three regions emerge: namely, the early
(E), the intermediate (I), and the saturation (S) regions,
separated by two characteristic times, as shown in Fig.
6. Sk(t) starts off in the E region and remains there until
a time on the order of L2. This marks the onset of the I
region. In this region, the odd SF’s are governed by on
exponential decay function. In contrast, the even SF’s
are governed by a power law with a slope of unity. They
then develop surprising “dip”s before they finally reach
the equilibrium region E. (Sk equal unity with a slope or
about 0.5, as shown in the graph.)

Turning to the finite-T cases, we see that the three
regions still exist. The time scales are longer than those
for the infinite-temperature case because the correlations
are much more complicated. Due to the different degrees

Fig. 6. Time evolution of the first six structure factors,
Sk, with k = (2πn/L, 0), nx = 1, 3, 5, 2, 4, 6 from the top to
the bottom, and a lattice size of 100. The straight lines have
slopes 0.5 and 1.0 when the selected temperature is infinite.

Fig. 7. Time evolution of the first six structure factors,
Sk, with k = (2πn/L, 0), nx = 1, 3, 5, 2, 4, 6 from the top
to the bottom, and a lattice size of 100. The straight lines
have slopes 0.5 and 1.0 when the selected temperature are
1.5Tc, 2.5Tc, 3.5Tc, and ∞.

of homogeneity at equilibrium, the saturation values or
Sk(t→∞)’s are different. They will be larger for lower
T , as seen in Fig. 7. Interestingly, these equilibrium
values vs. temperature can be fitted with an exponen-
tial function, as seen in Fig. 8. The dips seen before
are still present, but become more and more obscured
when the temperature is lowered. The portion of the
graph exhibiting a slope scaling exponent of 1 in the ‘I’
regime now is replaced sooner by a curve with a slope
= 0.5. This is clearly seen when the wave vectors are
small, but is somewhat obscured when the wave vectors
become large. This suggests that the high correlation
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Fig. 8. Fitting of the saturated structure factor by using a
first-order exponential function with y0 = 1.62458± 0.13563,
A1 = 93.7220 ± 33.50415, and t1 = 0.49187 ± 0.05733 with
the regression R2 = 0.99373 and Chi2 = 0.03326.

due to the finite-T may break the universality of the
scaling of the behavior at infinite T . This is caused by
the microscopic mechanism of how vacancies move and
how the non-linearities interact with the environment.
This is not yet fully understood and is yet to be seen.

IV. SUMMARY AND CONCLUSION

We have investigated the vacancy-driven disordering
process in an initially phase-segregated binary system.
We have considered up-quenches to finite temperatures,
T <∞, and compared the results with those found when
the up-quenching was from T = 0 to T =∞. Performing
MC simulations for a range of temperatures, we sought
to see whether the scaling exponents of the Brownian
vacancy case still held. Qualitatively, we monitored the
change of the configuration as time passed by taking se-
quences of snapshots. Quantitatively, we determined the
time-dependent disorder parameter and structure fac-
tors.

From the numerical data analysis of the slope of
A(L, T ; t) vs. t, we found that the scaling relation no
longer held, especially for low T , due to the fact that
inter-particle interactions had begun to play a role. Cor-
relation in the system switches from being short-range,
so that the vacancy does not perform a random walk.
We fitted the slope of the log-log plot of the disorder pa-
rameter versus time for various temperatures by using an
exponential and a Gompertz function. The later seemed
to give a better fit.

We now present some observation of the structure fac-
tors. The dips seen before are still present, but become
more and more obscured as the temperature is lowered.

The portion of the graph exhibiting a scaling exponent
of slope = 1 in the ‘I’ region now is replaced earlier by a
graph having a slope = 0.5. In conclusion, both measure-
ments suggest that the correlations due to the finite tem-
perature may break the universality of the scaling seen
at infinite T . This is caused by the microscopic mecha-
nism of how vacancies move and how the non-linearities
interact with the environment. Even though the model
we considered is a simple one, it can be the basis for
describing of a large variety of related systems.
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