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11 Molecular Dynamics 
Simulation of Surfactant 
Monolayers

Bin Liu, Jirasak Wong-Ekkabut, and Mikko Karttunen

11.1 INTRODUCTION

In this chapter, we provide a brief introduction to molecular simulations of lipid/surfactant 
monolayers. We do not aim to provide a comprehensive review. Instead, we first discuss the very 
timely problem of nanoparticle interactions with the lung surfactant and how that can be studied 
by simulations. After that, we provide a detailed introduction on the various aspects of building a 
monolayer simulation and show a case study using simulations of cationic surfactants and zwitter-
ionic lipids. The aim is to provide the reader with a detailed view of how to build simulations, what 
aspects are important, and what kind of properties can be analyzed. In our other contributions of 
this volume, we discuss electrostatic interactions in detail (see Chapter 6). That discussion is also 
valid here and we refer the reader to Chapter 6 regarding the details of how the important electro-
static interactions must be accounted for in interfacial systems.

11.2 EFFECT OF CARBON NANOPARTICLES ON LUNG SURFACTANT

Continuous combustion of fossil fuel produces airborne pollutants into the atmosphere. To a large 
degree, pollutants consist of carbonaceous particles with a broad size distribution [1–4]. Usually, 
larger particles can be trapped and removed from the respiratory system, while the smaller ones, 
especially those in the nanometer range, can reach the alveoli and get transferred into the blood 
circulatory system [5–7]. Therefore, these combustion-generated particles are responsible for vari-
ous respiratory and cardiovascular diseases [5,8,9]. There have been growing public health concerns 
regarding nanomaterials, and the potential risk issues associated with carbon nanoparticles (CNPs) 
have been intensely studied. It has been known for some time that CNPs deposit in the lung and can 
induce pneumoconiosis [10–15].

Computer simulations provide an approach to investigate the molecular-level interactions of 
nanoparticles with the lung surfactant. Importantly, simulations results can predict how nanopar-
ticles influence hydrogen bonding, hydrophobic interactions, and ordering of the lung surfactant. 
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250 Computational Methods for Complex Liquid–Fluid Interfaces

This allows for detailed analysis of the structural and dynamic properties of lung surfactant in 
the presence of varying concentrations of CNPs. In reality, the lung surfactant consists of vari-
ous biological molecules, for example, phospholipids, cholesterol, and surfactant protein [16]. The 
inclusion of all of the components is impossible, since simulations are limited by the number of 
molecules they can handle as well as accessible time scales. To reduce the complexity of the sys-
tem, pure lipid monolayer of dipalmitoylphosphatidylcholine (DPPC) and fullerene C60 have been 
used in a number of studies as a simple model of lung surfactant and CNPs, respectively. In our 
own study using such a system, coarse-grained molecular dynamics (CGMD) simulations with 
the Martini force field [17] were performed with a series of constant particle number, volume and 
temperature (NVT) simulations with various box sizes at C60:DPPC ratios up to 0.3 [18]. CGMD 
allow us to reach a reasonably large length and long time scales (the systems consisted of 1600 
molecules per monolayer and run for 5–10 μs) so that monolayer collapse and pore formation could 
be observed [19,18]. In the presence of fullerenes, the surface tensions of monolayers significantly 
decreased at high compression (at small area per molecule), resulting in collapse of the monolayer, 
as shown in Figure 11.1. This is in agreement with the results from simulations of ternary lipid 
mixture monolayers [20]. On the other hand, at low compression (at a large area per molecule), 
fullerenes increase the surface tension of a monolayer, leading to pore formation, as shown in 
Figure 11.2. Interestingly, the monomeric fullerene had been suggested to be a stable form in both 
lipid monolayer and bilayer [14,21]. This result is, however, reliable only at low compression. Study 
of aggregation of fullerenes in monolayer showed that monomeric fullerene becomes significantly 
less especially at high compression and high concentration of fullerenes, Figure 11.3; see Ref. [18]. 
Aggregation of fullerenes causes a decrease of the effective area per molecule and lower surface 
tension. When fullerene clusters become larger in size than the monolayer thickness; the monolayer 
bends and folds into a bilayer/a hemispherical budding structure to prevent exposure to the vapor 
and water phase as shown in Figure 11.1. The free energy calculations [18] of a single fullerene 
transferring across the monolayer suggest that fullerene can easily penetrate into lipid monolayers 
and spontaneous translocation of fullerene out of the monolayer is rather difficult.

In conclusion, the simulations were able to suggest that the potentially harmful effects of the 
deposited CNPs on the respiratory system might be related to the difficulty of CNP clearance from 
lung surfactant. In addition, simulations suggest that CNPs may alter the physical and mechani-
cal properties of lung surfactant [20,18], which are responsible for respiratory distress syndrome 
[20,22–25].
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FIGURE 11.1 Snapshots illustrating the equilibrium systems of 1600 molecules/monolayer in the xz-plane. 
Cyan: lipid tails, purple: phosphate group in lipid heads, and red: fullerene. Water was omitted for clarity.
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FIGURE 11.2 Snapshots illustrating the equilibrium systems of 1600 molecules/monolayer in the xy-plane. 
Colors and simulation time are the same as in Figure 11.1.
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252 Computational Methods for Complex Liquid–Fluid Interfaces

11.3 PARAMETRIZING LIPID MOLECULES

Section 11.2 demonstrated the utility of molecular simulations. In this section, we discuss the details 
of how to obtain parameters for lipid or surfactant molecules when they are not readily available 
from prior research.

Before being able to perform any MD simulations, one must obtain force field parameters, or in 
case they do not exist, parametrize the molecules of interest so that the MD program can understand 
their compositions, structures, and interactions with each other and other components in simulation. 
This is an essential step as it determines the simulation’s correctness, quality, and value. Although 
lots of lipid and surfactant molecules have been parameterized, for many lipid molecules, signifi-
cant manual work, including ab initio calculations for partial charges and constructing topology 
files which describe the modeling or parametrization understandable to a MD program, is still 
mandatory to obtain a quality parametrization for lipid molecules. Tools for generating topology 
files automatically from a structure file such as a PDB file exist [26]. But the quality of the generated 
topology files is usually far from desirable.

There are two broad categories for the force fields in lipid modeling: the atomistic approach 
and the coarse-grained (CG) approach. The CG force fields, as used in the lung surfactant study in 
the previous section, such as the famous MARTINI model [17,27], are known for their speed and 
larger system sizes. Atomistic force fields, on the other hand, are often able to provide quantita-
tive predictions that can be verified by experiments, and are versatile. The atomistic force fields 
can be classified into two flavors: the all-atom ones and the united-atom ones. In an all-atom force 
field, such as OPLS [28,29], AMBER [30–33], and CHARMM [34–36], all atoms are explicitly 
present in the simulation. In a united-atom force field, such as the GROMOS force field [37–39], 
the nonpolar hydrogens bonded to the carbons in an acyl chain are absorbed into the carbons to 
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FIGURE 11.3 The monomer fraction of fullerenes as a function of the area per molecule at [C60]/[DPPC] 
ratios of 0.1 (red), 0.2 (green), and 0.3 (blue).
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253Molecular Dynamics Simulation of Surfactant Monolayers

which they are bonded, to form a united atom to reduce the number of interacting sites. Here, we 
focus on some practical issues and skills useful in obtaining good quality parametrization for lipid 
molecules by using one of the most widely used atomistic force fields for lipid simulations, the 
GROMOS force field and its derivative, the Berger lipid model [40]. It is also worth noting that 
the OPLS force field has also found many applications in lipid simulations (yet work remains to 
be done for OPLS peptide parameterization [41]). In addition, there is currently a very interesting 
open collaboration platform called Matching lipid force fields with NMR data (available at http://
nmrlipids.blogspot.ca). This approach is pioneered by Markus Miettinen and Samuli Ollila that is 
groundbreaking and may lead to completely new developments and integration of experimental 
and computational lipid data.

From the practical point of view, a good way to obtain a quality parametrization for a lipid 
molecule is by studying and reusing mature, well-tested parametrization for other lipid molecules, 
which share notable amounts of parts as the lipid to be parametrized. It may, of course, be the 
case that no such parametrization exists. This shortcut approach has been applied to many lipid 
molecules with success. One of the most famous baseline lipid parametrizations from which many 
other parametrizations were derived is the DPPC parametrization [42] based on the GROMOS force 
field and the Berger lipid model. Many other saturated dichained lipids, including DMPC [43] and 
DLPC, can be easily parametrized by adding or removing repeating hydrocarbons. Borrowing the 
parametrization for the double-bonded hydrocarbons, this DPPC parametrization can be adapted 
to construct parametrization for unsaturated dichained lipids, such as DOPC, POPC, and SOPC in 
principle. A word of warning should be given, however: Double bonds can be tricky to parametrize 
and it has been shown that old parametrizations are wrong and can influence the observed physical 
properties of lipids and their interactions with others [44,45]. Similarly, the PC headgroup can also 
be substituted by other parametrized headgroups, such as the PG headgroup, to obtain parametriza-
tions for the corresponding PG lipids [46].

If the headgroup of the lipid of interest has not been parametrized, one can use the parameter 
set of a force field to parametrize it. The parameter set includes equilibrium position and force 
constant for bonded interactions such as bond stretching, bond angle bending, proper and improper 
dihedral interactions, and van der Waals, radii and constants. What is usually missing in a force 
field for a specific headgroup is the partial charges. Quantum chemistry calculations are needed to 
obtain the partial charges to parametrize a headgroup. Ideally, one should apply quantum chemistry 
approaches to calculate the partial charges for the entire lipid. However, as the computational cost 
of a quantum chemistry calculation scales as the third order or even more of the number of elec-
trons in the system, it becomes quickly intractable as the size of the lipid increases. Fortunately, the 
locality of partial charges and the insulating property of hydrocarbons can be employed to reduce 
the computational cost. The locality of partial charges means the partial charge of a specific site 
(an atom or a united atom) is only influenced heavily by its first and second bonded neighbors. One 
important exception is aromatic rings. In any case, an aromatic ring must be treated as a whole. 
The insulating property of hydrocarbons means one hydrocarbon can be essentially regarded as a 
neutrally charged dividing point to separate two independent partial charge regions. Therefore, one 
can perform quantum chemistry calculations for a pseudomolecule composed of a headgroup and 
a methyl or ethyl group. If the headgroup contains one or more hydrocarbons, one can divide the 
headgroup again into smaller parts and cap them with methyl or ethyl groups to form pseudomol-
ecules. Usually the accuracy of partial charges obtained from such a pseudomolecule is within the 
tolerance of an MD simulation for lipids.

Quantum chemistry calculations for partial charges can be performed by using the well-known 
Gaussian package [47] and some open source packages such as the GAMESS family, which includes 
GAMESS-US [48,49] and Firefly [48,50] as its two major variants. One of the most popular basis 
set, for example, 6-31G* and 6-31G(d,p) [51–53], which offer both decent accuracy and acceptable 
computational cost, is often used for calculating the partial charges for a lipid. 6-31G* has also been 
employed to obtain the partial charges in the AMBER force field [54]. These basis sets usually work 
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254 Computational Methods for Complex Liquid–Fluid Interfaces

well for neutral and cationic lipids. But for anionic lipids, 6-31+G* or 6-31+G(d,p) [55,56], which 
include diffuse functions to account for the presence of significant charge density that are distant 
from the atomic nuclei, are needed to get accurate results at the cost of slower or even difficult con-
vergence. To take the effect of electron correlation on partial charges into account, post-Hartree–
Fock (HF) methods or density functional theory (DFT) methods are usually employed as they are 
generally superior to the plain HF level calculation in which electron correlation is totally neglected. 
The Moeller–Plesset level 2 (MP2) method, which is a post-HF method, is usually preferable as it 
can take most of electron correlation into account at affordable computational cost. DFT methods 
can also work well, provided one chooses an appropriate exchange-correlation functional (Exc). The 
quantum chemistry packages mentioned earlier can offer four sets of partial charges, that is, those 
by Mulliken population analysis [57,58], Löwdin population analysis [59,60], electrostatic potential 
analysis (ESP) [61,62], and natural population analysis (NPA) [63–65]. NPA can only be done by 
the natural bond orbital (NBO) module [65], which exists as a plug-in for all the major quantum 
chemistry packages. Once one obtains the four sets of partial charges, one should first use one’s 
chemical instinct to judge which set is most reasonable. Our experience shows that usually, the NPA 
scheme is the choice as it is not sensitive to the choice of basis set, theory level, or initial structure 
of the molecule being investigated. But the choice of partial charge scheme could differ from case 
to case. In principle, one should also employ polarized continuum model (PCM) [66–69] to reflect 
the influence of the aqueous environment on partial charges. However, our experience shows the 
use of PCM makes negligible difference for partial charges of the molecules for biological or physi-
ological simulations.

Quantum chemistry calculations for partial charges usually take two steps. First, one uses the 
plain HF level calculation to perform geometry optimization for the molecule being investigated 
and obtain the equilibrium structure. We put a double quote to encompass the word equilibrium, 
because the geometry optimization usually ends up in a local minimum or even a saddle point on 
the potential energy surface as the global minimum is extremely difficult to reach if possible at 
all. This is caused by the high dimensional and very complex potential energy surface landscape 
of any molecule of decent size. The point of performing this step is getting a structure reasonably 
close to the real equilibrium structure for the second quantum chemistry calculation step, and in 
real MD trajectories, molecules are always close to their equilibrium structures but seldom sit there. 
The second step involves using the optimized structure obtained in the first step to perform single 
point calculation at either MP2 level or with a DFT method to account for electron correlation. Our 
experience shows the partial charges obtained by using a MP2 level or DFT calculation are distin-
guishable from those from the plain HF level calculation, but reasonably close.

One may encounter the difficult situation in which one bonded interaction in the molecule being 
parametrized has not been parametrized in a specific force field. One obvious approach is to look for 
experimental results to find the equilibrium position and force constant for it. One can also resort to 
quantum chemistry calculations to perform a scan of the potential energy surface on the dimension of 
interest. In the following example (Figure 11.4), the angle bending interaction between CH2–(C═O)–
C(benzene) is not parametrized in the GROMOS force field [39]. The first step to parametrize it using 

O

FIGURE 11.4 Diagram for a pseudomolecule for parametrizing the angle bending interaction between 
CH2–(C═O)–C(benzene).
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255Molecular Dynamics Simulation of Surfactant Monolayers

the harmonic oscillator approximation is capping CH2 with CH3 (methyl group) to form a pseudo-
molecule. To facilitate the parametrization, one would better convert the structure representation of 
this pseudomolecule from Cartesian to internal coordinates (Z-matrix representation), which can be 
accomplished by using chemical visualization programs such as MacMolPlt [70]. Then one can gen-
erate a set of input files for quantum chemistry calculations with single point structures represented 
by Z-matrix and with varying CH2–(C═O)–C angles, which should cover the guessed equilibrium 
angle. This set of quantum chemistry calculations usually can give a set of system energies, which 
can be almost perfectly fitted to a parabola against the varying CH2–(C═O)–C angles. From the 
fitting, one can retrieve the equilibrium angle and force constant for this angle bending interaction.

11.4 SIMULATION BOX SETUP

Once parametrization for all molecules has been obtained; the next step for the simulation is to 
construct a simulation box, which consists of all the components needed and has the appropriate 
geometric configuration. In theory, any box type that can fill up the entire space with periodic 
boundary condition can be used for monolayer simulations, including some perhaps bizarre sound-
ing box types like rhombic dodecahedron or truncated octahedron. For the easy of analysis and 
practical reasons, the simplest rectangular box type is almost always used unless there are some 
special requirements.

For monolayer at air/water interface simulations, there are two popular geometrical configura-
tion setups (see Figure 11.5). In Figure 11.5a, the simulated monolayer is placed at the interface 
between the water and air phases, and a wall potential is applied to the bottom of the water phase 
to prevent molecules from escaping. The water slab should be thick enough to allow recovery of 
bulk water property for the region that has a direct effect on the monolayer [71]. Another very 
popular configuration is displayed in Figure 11.5b where two symmetrical monolayers are sepa-
rated by a water slab thick enough to restore bulk water property in the middle and hence prevent 
interactions between these two monolayers [72]. Caution should be taken when one uses the setup 
in Figure 11.5a with the constant particle number, pressure and temperature (NPT) ensemble, or in 
a situation in which severe buckling may develop, as the varying box size or monolayer geometry 
may interfere with the wall potential and cause artifacts.

(a) (b)

FIGURE 11.5 Two types of simulation box setup for monolayers at the air/water interface. (a) A wall poten-
tial is applied to prevent water from escaping. (b) Symmetrical monolayers separated by a thick water slab. 
Monolayers displayed here consist of DPPC lipids modeled by the GROMOS force field and the Berger lipid 
model.
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256 Computational Methods for Complex Liquid–Fluid Interfaces

One way to check if the water slab in Figure 11.5b is thick enough is to calculate water dipole 
orientation along the z-axis and calculate the Debye screening length. In the vicinity of the polar 
headgroups of the monolayers, water dipole orientation is distinctively different from that in bulk 
water region, which should be isotropic. With either configuration, the air phase (essentially vacuum 
in most simulations) needs to be thick enough to prevent the interactions between the simulated 
system and its periodic images in z-direction (Figure 11.6).

11.5 RUNNING MONOLAYER SIMULATIONS

Once the simulation box has been constructed, the production simulations are usually the least 
 complicated step compared to parametrization or analysis (which will be discussed in detail in 
the following later). Modern MD packages, such as GROMACS [73], NAMD [74], and AMBER 
[75], usually provide reliable default parameter settings and excellent documentation. One must, 
however, always pay attention to the particular demands of the system and verify that the behavior 
is physically correct [76]. Typically, one needs to conduct trial simulations to verify the choice of 
parameters against existing experiments or other simulation results.

Usually monolayer simulations start with the energy minimization step. Steep descent and con-
jugate gradient (CG) methods are the most popular choices. This step relaxes the energy introduced 
by the artificial system setup, which could otherwise make the following dynamic simulation steps 
unstable. Failing to complete the minimization step usually indicates serious issues in either param-
etrization or simulation box setup or both.

Depending on the goals one wants to achieve with a monolayer simulation, the next step could 
be either a constant temperature (NVT) simulation that comprises of both the equilibration stage 
and the production stage, or a series of NVT simulations or constant temperature constant pres-
sure (NPT) simulations for equilibration followed by a production of NPT simulation. The choice 
of thermostat and/or barostat determines the quality of NVT or NPT simulations to a large extent. 
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FIGURE 11.6 Water dipole orientation for the symmetrical configuration in Figure 11.5b. The two sym-
metrical peaks correspond to the phosphate region in the DPPC headgroup, which significantly reorients 
water dipole. Bulk water property rapidly resumes away from the headgroup region. The ripples in the lipid 
chain region and in the air phase are caused by small number of water molecules that have escaped from the 
water slab.
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Popular thermostats include Nosé-Hoover [77,78] or Nosé-Hoover chains [79], Berendsen ther-
mostat or its variants [80], Andersen thermostat [81], and the increasingly popular V-Rescale 
thermostat [82], which has proven to be suitable for both equilibration and production simulations 
[83]. Popular barostats include Berendsen coupling [80], which is very useful for situations where 
the system is far from equilibration as it provides first-order decaying toward equilibrium, and the 
Parrinello–Rahman coupling [84] that serves the production stage very well and is generally the 
recommended method.

In the past, treating long-ranged Coulombic interactions were computationally intensive and 
tricky to handle. The particle mesh Ewald (PME) algorithm [85] is becoming the de facto standard 
treatment for Coulombic interactions as it offers both satisfactory accuracy and very decent effi-
ciency [86–90], provided one chooses appropriate cutoff ranges. The choice of real-space range is 
usually less important when PME is used than with other algorithms that treat Coulombic interac-
tions such as reaction field [91], since in PME, the real-space cutoff is no more than a division of 
computational burden into a real-space part and a reciprocal space part. The lower sensitivity to the 
choice of cutoff range in PME is another advantage. Recent reviews are provided in Refs. [89,90]. 
Our other contribution in this book also contains a detailed discussion of electrostatic interactions 
when interfaces are present (see Chapter 6).

11.6 ANALYSIS AND A CASE STUDY FOR DPPC/CTAB MONOLAYERS

In this section, we discuss both the conventional analysis that can be relatively easily done and some 
advanced analysis techniques, which have been recently developed in the context of monolayer 
simulations. As shown in Figures 11.5b and 11.7, both pure DPPC monolayers and DPPC/CTAB 
mixtures were simulated by employing the symmetrical configuration setup [72]. Each monolayer 
in the simulation box consists of 128 lipids. Cetyltrimethylammonium bromide (CTAB) is a cationic 
surfactant [92]. It has a trimethyl ammonium headgroup and a lipid chain of 16 hydrocarbons. A 
series of NVT simulations with various simulation box sizes at various CTAB molar fractions were 
conducted.

Snapshots along the trajectory are often an intuitive and important way to gauge how the simula-
tion evolves in time. Figure 11.7 displays snapshots at the end of 1 µs trajectories for three mono-
layers with various CTAB molar fractions. The visualizations were obtained by using the VMD 
[93,94] software, possibly the most popular MD visualization tool. Severe buckling occurs in the 

(a) (b) (c)

FIGURE 11.7 Pure DPPC monolayer and DPPC/CTAB mixtures at area per lipid 0.4 nm2. (a) High surface 
pressure at very low area per lipid induces buckling in pure DPPC monolayer. (b) 20% cationic CTAB (deep 
blue) with 80% DPPC mixture has only very wild surface undulation. (c) 30% Cationic CTAB (deep blue) with 
70% DPPC mixture resumes flat geometry even at very low area per lipid.
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258 Computational Methods for Complex Liquid–Fluid Interfaces

pure DPPC monolayer (Figure 11.7a) at a low area per lipid 0.4 nm2, which indicates high surface 
pressure. The monolayer with 20% CTAB displays much milder buckling and with 30% CTAB, 
buckling almost disappears. This indicates CTAB stabilizes the flat geometry of DPPC monolayers, 
especially with high surface pressure.

The goals of conducting an MD simulation can be categorized into studying statistical proper-
ties and investigating dynamical processes. Before taking statistics, one must ensure equilibrium 
has been reached and that the trajectories from the equilibration have been discarded from the 
analysis. The most common approach to judge if the system has entered equilibrium is to investi-
gate the trend of various energies, including total, kinetic, potential, and other energies belonging 
to various degrees of freedom. If at least one of them is still displaying a systematic increase or 
decrease, the system is still not in equilibrium. This is, however, not a sufficient criterion and 
other quantities, for example, the number of hydrogen bonds, must be monitored. In addition, 
analysis of fluctuations is often a useful way to analyze equilibrium. Analysis of lateral diffusion 
of lipids (effective mixing) is another important quantity. The lateral diffusion coefficient can be 
evaluated by
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where
the subscript α denotes a specific type of lipid. In this case study, it is either DPPC or CTAB.
á ñr ti

2( )  is the average squared lateral displacement of the ith lipid belonging to type α at time t
Nα is the total number of lipids of type α in the system

The motion of the center of mass of the corresponding leaflet needs to be removed from r ti
2( ) .

One of the most important characterizations for the behavior of monolayers is the surface ten-
sion/pressure to area per lipid isotherms. From the pressure tensor in the simulation box, the surface 
tension of a monolayer can be evaluated [95] as

 g = ( ) /2 = ( ) /2,á - × ñ á - ñ ×P P L P P LN L z N L z  (11.2)

where
Lz is the box size in z-direction
PN = Pzz is the normal pressure and the third diagonal component of the pressure tensor
PL = (Pxx + Pyy)/2 is the lateral pressure
Pxx and Pyy are the first and second components of the pressure tensor

The brackets denote averaging over time. The second equality applies only to NVT simulations 
where the box size in z-direction is a constant, which applies to the case study here.

To get a more direct comparison between simulations and experimental data, the surface pres-
sure of a monolayer can be evaluated, which can be accomplished by deducting the surface tension 
of the monolayer from the bare air/water surface tension under the same condition:

 P( , ) = ( ) ( , ),0A T T A TL Lg g-  (11.3)

where γ0 ≡ γ0(T) is the bare water/air surface tension, which is a function of temperature, and both 
Π and γ are functions of the area per lipid AL and temperature.

However, no water model can reproduce the real bare air/water surface tension for a 
broad range of temperature, which might be used in biological or physiological simulations. 
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Therefore, instead of using experimental data for bare air/water surface tension, the simulated 
values by the specific water model used in a simulation should be employed to ensure consis-
tency. In addition, density profiling is a valuable tool to investigate the relative positioning of all 
relevant components in the simulation box and the change of it caused by other factors (Figures 
11.8 through 11.10).

(a) (b)

FIGURE 11.8 Phosphorus (the large tan atom)–nitrogen (the large blue atom) vector in PC headgroups reori-
ented by neighboring cationic CTAB. (a) The P-N vector of DPPC is oriented almost parallel to the monolayer 
plane. (b) The cationic CTAB (green lipid tail) essentially reorients the P-N vector of DPPC.

FIGURE 11.9 The normal vectors (arrows) for highly buckled DPPC monolayers separated by a water slab. 
Each monolayer has 2048 DPPCs. Water is disabled in visualization for clarity. Phosphates were chosen to 
approximate the interface between water and DPPC monolayers. The normal vectors always point toward 
water.
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11.7 DISCUSSION AND CONCLUSIONS

In this chapter, we have provided a detailed discussion of how to set up monolayer simulations, 
the caveats and various technical details as well as software commonly used for such simulations. 
Our aim was not to provide a comprehensive review of the vast literature on the topic but rather to 
provide a fairly hands-on approach to help the interested readers to set up, run, and analyze their 
own simulations.
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