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Abstract. In this study, we have successfully parameterized the coarse-grained (CG) model of 

cis-1,4-polyisoprene (main component of natural rubber) based on the MARTINI force field. 

An isoprene monomer is mapped into one bead of CG model. The structure, bulk and 

thermodynamics properties of cis-1,4-polyisoprene with new CG model are well comparable to 

the atomistic simulation model and experiment. Our CG model of cis-1,4-polyisoprene will be 

helpful to study in the advanced rubber nanocomposite materials. 

1.  Introduction 

Rubber is one of the most important natural resources and has a very high impact on Thailand’s economy. It is 

composed mainly of high molecular weight polymer cis-1,4-polyisoprene (cis-PI). Computer simulations can 

play role in the advanced rubber technologies as the virtual experiments, carried out in silico, to observe and 

fine-tune the chemical details of both rubber and rubber composites. These numerical experiments can greatly 

reduce time and cost from trial and error processes in the laboratories. However, there are still rooms for 

improvement as the traditional detail-riched atomistic model of polymers are still consuming a large amount of 

computer time to produce the well-equilibrated conformation of polymer networks. Therefore, some efforts were 

put to provide the more simplified representations of polymer molecules, namely the MARTINI force field [1]. 

The MARTINI models were built for amino acids, water, phospholipid cell membranes, fullerenes and some 

other polymers [2-5], but there is no parameter for rubber molecules yet. In this study, CG model of cis-PI chains 

were parameterized based on MARTINI scheme [1]. Solvation free energy and chain properties of cis-PI were 

calculated in water, cyclohexane and in own melt-state. A series of molecular dynamics (MD) simulations of CG 

model were performed in comparison with the united-atom(UA) model to verify the transferability between two 

length scales.  

http://creativecommons.org/licenses/by/3.0
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2. Methodology 

2.1. MD simulations 

2.1.1. United-atom (UA) Model. Simulations of the cis-PI were performed in melts and solvents (water and 

cyclohexane molecules) with the united-atom force field. The united-atom model was used as a reference 

because of its ability to reproduce the experimental results, such as density, glass transition temperature of the 

polymer network and self-diffusion of the polymer chains [6]. For the solvated systems, a cis-PI chain with the 

length of 100-mer was solvated by 22331 single point charge (SPC) [7] water and 5000 cyclohexane. For the 

system of cis-PI in melts, 500 chains with the length of 100-mer were used. After an energy minimization using 

the conjugate gradient algorithm [8], the MD simulations of cis-PI in solvents and melts were performed under 

the constant of number of particles, pressure, temperature (NPT) with GROMACS package version 5.1.1 [9]. 

The temperature was kept constant at 300 K by Parrinello-Donadio-Bussi velocity rescale thermostat algorithm 

[10],while the pressure was set at 1 bar by Parrinello-Rahman algorithm [11, 12]. The simulations were run for 

200  and 500 ns for the systems of cis-PI in solvents and in melts, respectively. The trajectories after 150 ns and 

200 ns were used for the analysis for the systems in solvents and in melts, respectively. 

2.1.2. Coarse-grained (CG) Model. The CG simulations were performed with the newly parameterized coarse-

grained force field in order to reproduce the thermodynamic and conformational features, observed in the 

simulations under united-atom model. The CG model was described in the next session. With the similar setup 

protocols to the united-atom simulations, MARTINI model of 5000 CG water beads and 5000 CG cyclohexane 

molecules [1] were added in the simulation box of a CG cis-PI. For CG cis-PI in melts, 500 chains of cis-PI with 

the length of 100-mer were built. All MD simulations were performed in the NPT ensemble with 300 K and 1 

bar constant. The MD parameters can be seen in [5, 13]. The simulations of cis-PI in solvents and melts were run 

for 1.5 and 6 µs, respectively. The trajectories after 200 ns were used for all analysis. 

 

Figure 1. (Left) two-dimensional chemical structure of cis-1,4-polyisoprene; (Right) superimposition of the 

coarse-grained cis-1,4-polyisoprene chain (big blue sphere) to the united-atom model (green bond and stick), an 

isoprene monomer is mapped to a coarse-grained bead.   

2.2. Free energy calculations 

The free solvation energies of an isoprene monomer in water and cyclohexane were calculated by using 

thermodynamics integration (TI) approach [14]. The free energy of united-atom (UA) and coarse-grained (CG) 

simulations were compared. Each system was composed of an isoprene monomer solvated by 4000 water, 512 

cyclohexane or 500 cis-PI chains. To reduce the bad interactions in the systems, the steepest descent 

minimization was applied. Afterward, the system was equilibrated with NPT ensemble. Finally, the production 

runs with specific  for the UA and CG systems were performed under the constant of number of particles, 

volume, temperature (NVT) ensemble for 2 ns and 300 ns, respectively. The  value is varied from 0 to 1 with 

0.1 interval. The free energy differences were estimated by the Bennett Acceptance Ratio as implemented in 

gmx bar in GROMACS package [9, 15]. 

3.  Results and discussions 

3.1. Coarse-Grained Representation Mapping and Parameterization 

To obtain a simplified model, the united-atom model was mapped into a coarse-grained representation, in which 

a monomer consisted of only one superatom bead (see Figure 1). The C3 type in MARTINI force field were 

choosen for the non-bonded parameters [1]. Bond lengths and angles were measured between centers of mass of 
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two and three isoprene monomers, respectively. Bond stretching and angle bending between groups of atoms 

defined in the coarse-grained representation were extracted from the united-atom MD trajectories of the cis-PI in 

melts, as shown in the probability distribution histogram in Figure 2 (red lines). For bonded parameters, the force 

constants of stretching and bending harmonic potentials were fitted from an equivalent UA simulation. The 

normalized bond and angle distributions can be converted to the potential of mean force (PMF) using   
        where k is Boltzmann constant, T is Temperature in Kelvin unit and  is the normalized distribution. 

The bond and angle force constants were extracted by fitting the PMF plots with the functions of        

 
 

 
         

 
     and         

 

 
                    

 
     , respectively. As the results, the equilibrium 

bond length (  ) was 0.46 nm and the force constant (  ) was 5000 kJmol
-1

nm
-2

 for the bond stretching 

parameter. The 110 degree equilibrium angle (  ) and 37 kJmol
-1

 force constant (  ) were used for bond 

bending parameters. The coarse-grained MD was then performed and compared to the bond length and angle 

distribution of the united-atom MD simulation (see Figure 2 (blue lines)).  

 

 
Figure 2. Normalized probability distribution of A) bond length and B) angle parameters, compared between the 

cis-1,4-polyisoprene chains parameterized by united-atom (red) and coarse-grained force fields (blue) 

 

To ensure the reliability of the force field parameters, we calculated the solvation free energies of the isoprene 

monomer in different environments using both UA and CG models (Table 1). The hydration free energy of cis-

PI with the CG model is in agreement with the UA model and the previous studies [16]. Water was shown to be 

the bad solvent for cis-1,4-polyisoprene according to the positive solvation free energy in both force fields. In 

contrary, the solubilities of cis-PI in cyclohexane and in melts are negative. As the results the most favorable 

solvent for cis-1,4-polyisoprene is in cyclohexane, followed by in melts and water, respectively. 

Table 1. Solvation free energies of an united atom and a coarse-grained cis-1,4-polyisoprene in water, 

cyclohexane and melts, Solvation free energy in water was also compared to an experiment and a previous MD 

simulation data. 

Models Water (kJ/mol) Cyclohexane  (kJ/mol) Melt (kJ/mol) 

United-atom 5.78 ± 0.23 -15.67 ± 0.15 -12.65 ± 1.06 
Coarse-grained 4.72 ± 0.04 -17.90 ± 0.01 -8.73 ± 0.02 

References 2.9
a
, 3.0 ± 0.3

b
 N/A N/A 

a
Experiment[17], 

b
MD simulation[16] 

3.2. Validations of the CG PI  

 

Table 2. The autocorrelations relaxation time of the end-to-end distance (R0) and the radius of gyration (Rg) for 

100-mer cis-1,4-polyisoprene in water, cyclohexane and melts for the united-atom and coarse-grained models.  

Models 
Water Cyclohexane Melt 

R0 (ns) Rg (ns) R0 (ns) Rg (ns) R0 (ns) Rg (ns) 
United-atom 14.00 3.40 7.10 5.60 192.32 193.40 

Coarse-grained 3.37 0.84 79.43 60.58 105.75 183.33 
 

Equilibrations of UA- and CG-cis-1,4-polyisoprene in melts were monitored through their chain properties such 

as the end-to-end distance (R0) and the radius of gyration (Rg). Autocorrelations relaxation time of R0 and Rg 
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were calculated and shown in Table 2. Then, time-averaged R0, Rg and bulk density after equilibrium were 

determined and shown in the Table 3. The average R0 and Rg of the coarse-grained cis-PI chains were in a similar 

order of magnitude with the UA model. Moreover, the bulk densities of both models were comparable to the 

experiment [18] and the previous MD simulations [19]. In water, R0 and Rg were observed to be smaller than 

those in cyclohexane. This result corresponded to the tendency to collapse of rubber chains when surrounded by 

polar molecules, referred as the ‘bad’ solvation. In contrast, the large R0 and Rg values for cis-1,4-polyisoprene 

were observed in cyclohexane, implying the swelling of the rubber chains when surrounded by non-polar 

molecules. Similar trend was observed in both the united-atom and coarse-grained simulations, suggesting a 

good transferability of the models. Moreover, the averaged densities of the cis-PI in melts were 861.02±0.59 

kg/m
3 

and 1091.70±0.00 kg/m
3
 for the UA and the CG model, respectively. These values are also in agreement 

with the experiment (910 kg/m
3
) [18] and the previous MD simulation (885.1±0.2 kg/m

3
) [19]. 

Table 3. End-to-end distance and radius of gyration of 100-mer cis-1,4-polyisoprene in water, cyclohexane and 

melts for the united-atom and coarse-grained models.  

Models 
Water Cyclohexane Melt 

R0 (nm) Rg (nm) R0 (nm) Rg (nm) R0 (nm) Rg (nm) 
United-atom 1.87±0.44 1.13±0.01 6.83±3.14 2.87±0.68 4.60±0.06 2.04±0.02 

Coarse-grained 1.63±0.01 1.09±0.00 8.98±1.04 3.81±0.24 6.65±0.01 2.70±0.01 

4. Conclusions 

The thermodynamic and polymer chain properties of cis-1,4-polyisoprenes from our coarse-grained model were 

in good agreement with those from united-atom MD simulations. The bulk density was also in a reasonable 

agreement with the experiment. The cis-1,4-polyisoprene chains tended to be stretched in non-polar solvent 

(cyclohexane), while tended to be shrunk in polar solvents (water). This was verified by the solvation free energy 

calculation, in which the solvation free energy of cis-1,4-polyisoprene in cyclohexane was significantly larger 

than in water. In conclusion, the coarse-grain model has been proven to be a promising tool for simulating the 

advanced rubber materials because of its potentials to reproduce the chain and bulk properties and to speed-up 

the atomistic simulation.    
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